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In a key management scheme for hierarchy based access control, each security class having
higher clearance can derive the cryptographic secret keys of its other security classes hav-
ing lower clearances. In 2008, Chung et al. proposed an efficient scheme on access control
in user hierarchy based on elliptic curve cryptosystem [Information Sciences 178 (1) (2008)
230–243]. Their scheme provides solution of key management efficiently for dynamic
access problems. However, in this paper, we propose an attack on Chung et al.’s scheme
to show that Chung et al.’s scheme is insecure against the exterior root finding attack.
We show that under this attack, an attacker (adversary) who is not a user in any security
class in a user hierarchy attempts to derive the secret key of a security class by using the
root finding algorithm. In order to remedy this attack, we further propose a simple
improvement on Chung et al.’s scheme. Overall, the main theme of this paper is very sim-
ple: a security flaw is presented on Chung et al.’s scheme and then a fix is provided in order
to remedy the security flaw found in Chung et al.’s scheme.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Hierarchical access control is a fundamental problem in computer and network systems. In a hierarchical access control, a
user of higher security level class has the ability to access information items (such as message, data, and files) of other users
of lower security classes. A user hierarchy consists of a number n of disjoint security classes, say, SC1, SC2, . . . , SCn. Let this set
be SC = {SC1, SC2, . . . , SCn}. A binary partially ordered relation P is defined in SC as SCi P SCj, which means that the security
class SCi has a security clearance higher than or equal to the security class SCj. In addition the relation P satisfies the follow-
ing properties:

(a) [Reflexive property] SCi P SCi, "SCi 2 SC.
(b) [Anti-symmetric property] If SCi, SCj 2 SC such that SCi P SCj and SCj P SCi, then SCi = SCj.
(c) [Transitive property] If SCi, SCj, SCk 2 SC such that SCi P SCj and SCj P SCk, then SCi P SCk.

If SCi P SCj, we call SCi as the predecessor of SCj and SCj as the successor of SCi. If SCi P SCk P SCj, then SCk is an interme-
diate security class. In this case SCk is the predecessor of SCj and SCi is the predecessor of SCk. In a user hierarchy, the
encrypted message by a successor security class is only decrypted by that successor class as well as its all predecessor
security classes in that hierarchy.
. All rights reserved.
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Akl and Taylor [1] first developed the cryptographic key assignment scheme in an arbitrary partial order set (poset) hier-
archy. MacKinnon et al. [2] presented an optimal algorithm, called the canonical assignment, to reduce the value of public
parameters. Harn and Lin [3] then proposed a bottom up key generating scheme, instead of using a top-down approach as in
the Akl and Taylor scheme and MacKinnon et al.’s scheme.

In order to solve dynamic access control problems, many schemes have been proposed in the literature [4–13]. Chang
et al. [8] proposed a key assignment scheme based on Lagrange’s interpolation method and one-way hash function. In their
scheme, a user with higher security clearance must iteratively perform the key derivation process for deriving the secret key
of a user who is not an immediate successor. Other proposed schemes [7,10] enhance Akl and Taylor’s scheme [1], and ex-
plore other possible approaches that can enable a user in a hierarchy to modify the secret key as and when necessary. Thus, a
predecessor can directly and efficiently derive the secret keys of its successor(s). Kuo et al. later developed a method [6] that
employs the public key to encrypt the secret key. Their scheme has a straightforward key assignment algorithm, small stor-
age space requirement, and uses a one-way hash function.

Shen and Chen proposed a novel key management scheme based on discrete logarithms and polynomial interpolations in
a user hierarchy [9]. However, Hsu and Wu [12] presented an attack, called the exterior root finding attack, on Shen-Chen’s
scheme [9] so that an attacker can derive the encryption key of a user in the hierarchy. In [12], authors showed that some
malicious insider, for example a user in a security class, can have access to the information items held by those who are not
his/her subordinates. They further proposed an improvement to amend the flaws in Shen-Chen’s scheme.

Chen and Huang proposed an efficient novel key management scheme for dynamic access control in a user hierarchy [13].
Their scheme is based on the efficiencies of one-way hash function and symmetric-key encryptions and decryptions. Further,
their scheme supports dynamic access control including adding new security classes in the hierarchy, deleting existing secu-
rity classes from the hierarchy, adding new relationships in the hierarchy, deleting existing relationships from the hierach-
chy as well as changing secret keys of security classes in the hierarchy. The performance of their scheme is also efficient
compared to Akl-Taylor’s scheme [1], Kuo et al.’s scheme [6], and Lin’s scheme [4].

In 2008, Chung et al. [11] proposed an efficient key management and derivation scheme based on the elliptic curve cryp-
tosystem. In their scheme, the secret key of each security class can be determined by a trusted centralized authority (CA). An
attractive advantage of their scheme is that it solves dynamic key management efficiently and flexibly. However, we show
that their scheme is vulnerable to exterior root finding attacks.

In this paper, we propose an exterior root finding attack on Chung et al.’s scheme [11] to show that their scheme is vul-
nerable under this proposed attack. Our attack on Chung et al.’s scheme is similar to Hsu-Wu’s exterior root finding attack on
Shen-Chen’s novel key management scheme. In our exterior root finding attack on Chung et al.’s scheme, an attacker (adver-
sary) who is not a user in any security class in a user hierarchy can derive the secret key of a security class by using the root
finding algorithm. In order to eliminate this security flaw in their scheme, we further propose a simple improvement on their
scheme. Hence, the theme of this paper is very simple: a security flaw is presented on Chung et al.’s scheme and then a fix is
provided to remedy the security flaw found in Chung et al.’s scheme.

The rest of this paper is sketched as follows. In Section 2, we review some mathematical background which are useful to
review Chung et al.’s scheme. We then give briefly an overview of Chung et al. scheme [11] in Section 3. In Section 4, we
describe our proposed exterior root finding attack on Chung et al.’s scheme [11]. In Section 5, we propose a simple improve-
ment on Chung et al.’s scheme to remedy the attack proposed in Section 4 and discuss security of our improved scheme. We
provide performance comparison of our improved scheme with Chung et al.’s scheme and Chen-Haung’s scheme in Section 6.
Finally, we conclude the paper in Section 7.
2. Mathematical background

In this section, we discuss the elliptic curve and its properties. We then discuss the rules for adding points on elliptic
curve and the elliptic curve discrete logarithm problem. We, finally, discuss the properties of a one-way hash function
and M. Ben-or’s method [14] for root finding and factorization of polynomials in finite field.

2.1. Elliptic curve over finite field

Let a and b 2 Zp, where Zp = {0, 1, . . . , p � 1} and p > 3 be a prime, such that 4a3 + 27b2 – 0 (mod p). A non-singular elliptic
curve y2 = x3 + ax + b over the finite field GF(p) is the set Ep(a, b) of solutions (x, y) 2 Zp � Zp to the congruence
y2 ¼ x3 þ axþ b ðmod pÞ;
where a and b 2 Zp are constants such that 4a3 + 27b2 – 0 (mod p), together with a special point O called the point at infinity
or zero point.

The condition 4a3 + 27b2 – 0 (mod p) is the necessary and sufficient to ensure that the equation x3 + ax + b = 0 has a non-
singular solution [15]. If P = (xP, yP) and Q = (xQ, yQ) be points in Ep(a, b), then P þ Q ¼ O implies that xQ = xP and yQ = �yP. Also,
P þO ¼ Oþ P ¼ P, for all P 2 Ep(a, b). Moreover, an elliptic curve Ep(a, b) over Zp has roughly p points on it. More precisely, a
well-known theorem due to Hasse asserts that the number of points on Ep(a, b), which is denoted by #E, satisfies the follow-
ing inequality [16]:
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pþ 1� 2
ffiffiffi
p
p
6 #E 6 pþ 1þ 2

ffiffiffi
p
p

:

In addition, Ep(a, b) forms an abelian group or commutative group under addition modulo p operation.

2.1.1. Addition of points on elliptic curve over finite field
We require the following parameters over the elliptic curve domain. We take an elliptic curve over a finite filed GF(p) as

Ep(a, b): y2 = x3 + ax + b (mod p), where a and b 2 Z�p. The field size p is considered as a large prime. We take G as the base
point on Ep(a, b) whose order is n, that is, nG ¼ Gþ Gþ . . .þ Gðn timesÞ ¼ O.

The elliptic curve addition differs from the general addition [17]. Let P = (x1, y1) and Q = (x2, y2) be two points on elliptic
curve y2 = x3 + ax + b (mod p), with P – �Q, then R = (x3, y3) = P + Q is computed as follows:
x3 ¼ ðk2 � x1 � x2Þðmod pÞ;
y3 ¼ ðkðx1 � x3Þ � y1Þðmod pÞ;

where k ¼
y2�y1
x2�x1

ðmod pÞ; if P – Q
3x2

1þa
2y1
ðmod pÞ; if P ¼ Q :

8<
:

2.1.2. Point multiplication on elliptic curve over finite field
In elliptic curve cryptography, multiplication is defined as repeated additions. For example, if P 2 Ep(a, b), then 6P is com-

puted as 6P = P + P + P + P + P + P (mod p).

2.2. Discrete logarithm problem

The discrete logarithm problem (DLP) is as follows: given an element g in a finite group G whose order is n, that is, n = # Gg

(Gg is the subgroup of G generated by g) and another element h in Gg, find the smallest non-negative integer x such that gx = h.
It is relatively easy to calculate discrete exponentiation gx (mod n) given g,x and n, but it is computationally infeasible to
determine x given h,g and n, when n is large.

2.3. Elliptic curve discrete logarithm problem

Let Ep(a, b) be an elliptic curve modulo a prime p. Given two points P 2 Ep(a, b) and Q = kP 2 Ep(a, b), for some positive inte-
ger k. Q = kP represents the point P on elliptic curve Ep(a, b) is added to itself k times. The elliptic curve discrete logarithm
problem (ECDLP) is to determine k given P and Q. It is relatively easy to calculate Q given k and P, but it is computationally
infeasible to determine k given Q and P, when the prime p is large.

2.4. One-way hash function

A one-way hash function h: {0, 1}⁄? {0, 1}l takes an arbitrary-length input X 2 {0, 1}⁄, and produces a fixed-length (say, l-
bits) output h(X) 2 {0, 1}l, called the message digest. The hash function is the fingerprint of a file, a message, or other data
blocks, and has the following attributes [16].

(i) h can be applied to a data block of all sizes.
(ii) For any given variable X, h(X) is easy to operate, enabling easy implementation in software and hardware.

(iii) The output length of h(X) is fixed.
(iv) Deriving X from the given value Y = h(X) and the given hash function h(�) is computationally infeasible.
(v) For any given variable X, finding any Y – X so that h(Y) = h(X) is computationally infeasible.

(vi) Finding a pair of inputs (X, Y) with X – Y, so that h(X) = h(Y) is computationally infeasible.

2.5. Root finding and factorization of polynomials in finite field

In 1981, M. Ben-or [14] proposed an efficient probabilistic algorithm for finding all the roots of a given polynomial
f(x) 2 GF(q)[x], where n is the degree of f(x), in GF(q). He also proposed another efficient probabilistic algorithm for factoring
a given polynomial f(x) 2 GF(q)[x], with degree n of f(x), in GF(q). In this section, we discuss these methods for the conve-
nience of our cryptanalysis and improvement of Chung et al.’s scheme.

2.5.1. Root finding of polynomial in finite field GF(q)
Suppose we are given a polynomial f(x) 2 GF(q)[x] of degree n(deg � f = n), in GF(q) and we want to find all the roots

a 2 GF(q) of f(x) = 0. Let q be odd.
M. Ben-or’s method [14] for finding all the roots of f(x) = 0 is as follows. Compute the greatest common divisor

(gcd) as f1(x) = gcd (f(x), xq � x). If f1(x) = 1, then f(x) has no roots in GF(q). Otherwise, in general, we have,
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f1(x) = (x � a1)(x � a2) . . . (x � ak), k 6 n, where ai’s are all the pairwise distinct roots of f(x) = 0 in GF(q). The probabilistic algo-
rithm for finding the roots of f1(x) 2 GF(q)[x] is given in Algorithm 1 [14]:
Algorithm 1. Finding roots of f1(x) 2 GF(q)[x]:ROOTS(f1(x))

if (deg � f1(x) = 1, i.e., f1(x) = (x � a)) then
return a;

end if
repeat

Choose d 2 GF(q) randomly;
Compute f2(x) = gcd[f1(x), (x + d)(q�1)/2 � 1];

until (0 < deg � f2 < deg � f1)
return ROOTS(f2(x)) [ ROOTS(f1(x)/f2(x)); {[ is the set union operator.}

M. Ben-or showed that the expected number of operations used by the above algorithm (Algorithm 1) for finding all roots
of f(x) = 0 is O(n � log n � L(n) � log q), where L(n) = log n � log log n. In other words, the expected running time of the Algorithm
1 is polynomial in n.
2.5.2. Factorization of polynomial in finite field GF(q)
Let we want to factor a polynomial f(x) 2 GF(q)[x] of degree n into its irreducible factors. Assume that f(x) has no repeated

factors and we want to factor f(x) as f(x) = g1(x) � g2(x) . . . gn(x), where gd(x) is the product of irreducible factors of f(x) of de-
gree d.

M. Ben-or proposed the following algorithm [14] for computing factors of the polynomial f(x) (Algorithm 2). Further, M.
Ben-or discussed how to factor gi(x) into irreducible factors of equal degree. He proved that the expected number of oper-
ations used by the algorithm (Algorithm 2) to factor an n-degree polynomial is O(n2 � L(n) � log q). That is, the expected run-
ning time of the Algorithm 2 is also polynomial in n.
Algorithm 2. Factorization

r0(x) = x;
f0(x) = f(x);
for d = 1 ? n do

rd(x) = (rd�1(x))q (mod fd�1(x)), deg � rd < deg � fd�1;
gd(x) = gcd (fd�1(x),rd(x) � x);
fd(x) = fd�1(x)/gd(x);

end for
return g1(x), g2(x), . . . , gn(x);
3. Overview of Chung et al.’s scheme

Chung et al.’s scheme [11] consists of three phases, namely, the relationship building phase, the key generation phase, and
the key derivation phase. In the relationship building phase, a central authority (CA) builds the hierarchical structure for con-
trolling access according to the relationship between the nodes. In the key generation phase, CA chooses a pair of points and
constructs the public polynomial using a one-way hash function. In the key derivation phase, the predecessor in the hierar-
chy can use its own secret key and the public information related to the successor(s) to derive the decryption key(s) for the
successor(s) for accessing the authorized file(s). Further, Chung et al. provided the solution of key management of dynamic
access problems by means of providing inserting a new security class, removing an existing security class, creating a new
relationship, revoking an existing relationship, and changing secret key of a security class in the hierarchy. We discuss
the followings for Chung et al.’s scheme in the following subsections.

3.1. Relationship building phase

In this phase, CA builds the hierarchical structure for controlling access according to the relationships among the nodes in
the hierarchy. Let U = {SC1, SC2, . . . , SCn} be a set of n security classes in the hierarchy. Assume that SCi is a security class with
higher clearance and SCj a security class with lower clearance, that is, SCi P SCj. A legitimate relationship (SCi,SCj) 2 Ri,j be-
tween two security classes SCi and SCj exists in the hierarchy if SCi can access SCj.
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3.2. Key generation phase

In this phase, CA performs the following steps:

Step 1: Selects randomly a large prime p, an elliptic curve Ep(a,b) defined over Zp such that the order of Ep(a, b) lies in the
interval pþ 1� 2

ffiffiffi
p
p

; pþ 1þ 2
ffiffiffi
p
p� �

, and a one-way function h(�) to transform a point into a number and a base point
Gj from Ep(a, b), 1 6 j 6 n. Then, for each security class SCj(1 6 j 6 n), selects a secret key skj and a sub-secret key sj.

Step 2: For all {SCij(SCi,SCj) 2 Ri,j}, computes siGj = (xj,i, yj,i), and h(xj,ikyj,i), where k is a bit concatenation operator.
Step 3: Finally, computes the public polynomial fj(x) using the values of h(xj,ikyj,i) as
fjðxÞ ¼
Y

SCi>SCj

ðx� hðxj;ikyj;iÞÞ þ skj ðmod pÞ
Step 4: Sends skj and sj to the security class SCj via a secret channel, and announces p, h(�), Gj, fj(x) as public.

3.3. Key derivation phase

In order to compute the secret keys skj of all successors, SCj, the predecessor SCi, for which the relationships (SCi, SCj) 2 Ri,j

between SCi and SCj hold, proceeds as follows:

Step 1: For {SCij(SCi, SCj) 2 Ri,j}, computes siGj = (xj,i, yj,i), and h(xj,ikyj,i).
Step 2: Computes the secret key skj using h(xj,ikyj,i) as follows:
fjðxÞ ¼
Y

SCi>SCj

ðx� hðxj;ikyj;iÞÞ þ skj ðmod pÞ;

fjðhðxj;ikyj;iÞÞ ¼ skj ðmod pÞ:
3.4. Inserting new security classes phase

If a new security class SCk is inserted into the hierarchy such that SCi P SCk P SCj, then the relationships (SCi, SCk) 2 Ri,k for
SCi P SCk and (SCk, SCj) 2 Rk,j for SCk P SCj need to be updated into the hierarchy. CA needs the following steps to manage the
accessing priority of SCk in the hierarchy.

Step 1: Updates the partial relationships R that follow when the security class SCk joins the hierarchy, and randomly selects
the secret key skk, the sub-secret key sk and the base point Gk for the class SCk.

Step 2: For all {SCij(SCi, SCk) 2 Ri,k} that satisfies SCi P SCk when the new class SCk is inserted in the hierarchy, computes
siGk = (xk,i, yk,i), and h(xk,ikyk,i).

Step 3: Computes the public polynomial fk(x) as follows:
fkðxÞ ¼
Y

SCi>SCk

ðx� hðxk;ikyk;iÞÞ þ skk ðmod pÞ
Step 4: For all {SCij(SCi, SCk) 2 Ri,k} and {SCjj(SCk, SCj) 2 Rk,j} that satisfy SCi P SCk P SCj when the new class SCk is inserted in
the hierarchy, computes skGj = (xj,k, yj,k), siGj = (xj,i, yj,i), h(xj,kkyj,k) and h(xj,ikyj,i).

Step 5: Computes the public polynomial f 0j ðxÞ as follows:
f 0j ðxÞ ¼
Y

SCi>SCk>SCj

ðx� hðxj;ikyj;iÞÞðx� hðxj;kkyj;kÞÞ þ skj ðmod pÞ
Step 6: Replaces fj(x) with f 0j ðxÞ, and sends skk and sk to SCk via a secure channel, and announces publicly Gk,fk(x) and f 0j ðxÞ.

3.5. Removing existing security classes phase

If an existing member SCk, such that the relationship SCi P SCk P SCj breaks up, wants to leave from a user hierarchy, then
CA not only directly revokes information related to SCk, but also alters the accessing relationship between the involved ex-
predecessor SCi and ex-successor SCj of SCk. In this phase, CA executes the following steps.

Step 1: Updates the partial relationship R that follows when SCk is removed.
Step 2: For all {SCkj(SCk, SCj) 2 Rk,j} does the followings:
Renews the secret key skj as sk0j and the base point Gj as G0j of SCj.
For all {SCij(SCi, SCj) 2 Ri,j} does the followings:

Renews {SCij(SCi, SCj) 2 Ri,j} after removing SCk.
Computes siG

0
j ¼ ðxj;i; yj;iÞ, and h(xj,i, yj,i).
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Computes the public polynomial f 0j ðxÞ as

f 0j ðxÞ ¼
Y

SCi>SCj

ðx� hðxj;ikyj;iÞÞ þ sk0j ðmod pÞ

Replaces fj(x) with f 0j ðxÞ.
Step 3: Sends sk0j to SCj via a secret channel and announces G0j and f 0j ðxÞ as public.

4. Cryptanalysis of Chung et al.’s scheme

In this section, we present an exterior root finding attack on Chung et al.’s scheme to show that their scheme is insecure
against this attack. Note that Hsu-Wu’s exterior root finding attack on Shen-Chen’s scheme requires some malicious insider,
for example a user in a security class, who can have access to the information items held by those who are not his/her sub-
ordinates. However, in our exterior root finding attack, any attacker (he/she needs not to be any malicious insider in the user
hierarchy as in Hsu-Wu’s attack), who is not a user in any security class in the user hierarchy, can easily derive the secret key
of a security class.

4.1. The exterior root finding attack on Chung et al.’s scheme

In exterior root finding attack, an attacker (adversary) who is not a user in any security class in a user hierarchy attempts
to derive the secret key of a security class by using the root finding algorithm. Note that in key generation algorithm of Chung
et al.’s scheme (see Section3.2), for each security class SCi, CA generates the base point Gi, the sub-secret key si and the secret
key ski, determines the public polynomial fi(x) and then securely sends ski to SCi, and announces publicly p,h(�),Gi and fi(x). In
the construction of the public polynomial fj(x) of a security class SCj, the sub-secret parameters of its all predecessors are
embedded in its public polynomial fj(x).

Consider the case when a security class SCk is inserted in the user hierarchy with the relationship SCi P SCk P SCj. Thus,
when a new security class SCk is added as a predecessor of SCj, CA updates the public polynomial of SCj by replacing fj(x) by
f 0j ðxÞ (see Section 3.4). However, for those predecessors, which remain as predecessors of SCj in f 0j ðxÞ, their secrets are still at
the same positions of f 0j ðxÞ. Now, knowing the public polynomial fj(x) of SCj before adding the security class SCk and the public
polynomial f 0j ðxÞ of SCj after adding the security class SCk until the secret key skj of SCj has been changed by CA, an attacker
can generate a polynomial by taking the difference of fj(x) and f 0j ðxÞ. Let this difference polynomial be denoted by
/ðxÞ ¼ fjðxÞ � f 0j ðxÞ. It is noted that
/ðxÞ ¼ fjðxÞ � f 0j ðxÞ ¼
Y

SCi>SCj

½x� hðxj;ikyj;iÞ� þ skj ðmod pÞ

0
@

1
A�

Y
SCi>SCk>SCj

½x� hðxj;ikyj;iÞ�½x� hðxj;kkyj;kÞ� þ skj ðmod pÞ

0
@

1
A

¼
Y

SCi>SCj

½x� hðxj;ikyj;iÞ� �
Y

SCi>SCk>SCj

½x� hðxj;ikyj;iÞ�½x� hðxj;kkyj;kÞ� ðmod pÞ
Further, we observe that the constructed polynomial /(x) has common factors (x � h(xj,ikyj,i)). Then the attacker finds the
roots of the equation /ðxÞ ¼ fjðxÞ � f 0j ðxÞ ¼ 0 in a polynomial time using [14,18]. With the knowledge of the roots, the attacker
can easily derive the secret key skj of the security class SCj. The attacker, who is not a user in hierarchy of security classes, first
obtains the roots h(xj,ikyj,i) and then computes the secret key skj of SCj as skj ¼ fjðhðxj;ikyj;iÞÞ ¼ f 0j ðhðxj;ikyj;iÞÞ ðmod pÞ. This
clearly shows that Chung et al.’s scheme is vulnerable to our proposed exterior root finding attack.

4.2. An example

For simplicity, we give the following simple example in order to demonstrate that our proposed exterior root finding at-
tack is effective in attacking on Chung et al.’s scheme. As shown in Fig. 1, the user hierarchy consists of six security classes,
denoted by U = {SC1, SC2, SC3, SC4, SC5, SC6}. CA computes the public elliptic curve polynomial fj(x) for each security class SCj.
Each security class SCi then derives the secret keys of its successors SCj, using the key generation algorithm as follows:
fjðxÞ ¼
Y

SCi>SCj

½x� hðxj;ikyj;iÞ� þ skj ðmod pÞ;

SC1 : f1ðxÞ ¼ ½x� hðx1;0ky1;0Þ� þ sk1 ðmod pÞ; where s0 is given by CA
SC2 : f2ðxÞ ¼ ½x� hðx2;1ky2;1Þ� þ sk2 ðmod pÞ;
SC3 : f3ðxÞ ¼ ½x� hðx3;1ky3;1Þ� þ sk3 ðmod pÞ;
SC4 : f4ðxÞ ¼ ½x� hðx4;1ky4;1Þ�½x� hðx4;2ky4;2Þ� þ sk4 ðmod pÞ;
SC5 : f5ðxÞ ¼ ½x� hðx5;1ky5;1Þ�½x� hðx5;2ky5;2Þ�½x� hðx5;3ky5;3Þ� þ sk5 ðmod pÞ;
SC6 : f6ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ� þ sk6 ðmod pÞ
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Fig. 1. A small sample of poset in a user hierarchy.
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We now consider the case that a new security class SC7 is inserted into the existing user hierarchy shown in Fig. 1, with
the relationship SC1 P SC7 P SC6. The resulting user hierarchy is shown in Fig. 2. Due to insertion of SC7, CA needs to select
randomly sk7, s7 and G7. Since SC7 is a successor of SC1 and a predecessor of SC6, CA constructs the public polynomial f7(x) and
replaces the public polynomial f6(x) with f 06ðxÞ, using the phase for inserting new security classes described in Section 3.4. We
note that before joining the security class SC7 into the hierarchy, the public elliptic curve polynomial for security class SC6

was
f6ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ� þ sk6 ðmod pÞ ð1Þ
After joining the security class SC7, the public polynomial f 06ðxÞ for SC6 and f7(x) for SC7 are formed as follows:
f 06ðxÞ ¼ ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ�½x� hðx6;7ky6;7Þ� þ sk6 ðmod pÞ ð2Þ

f7ðxÞ ¼ ½x� hðx7;1ky7;1Þ� þ sk7 ðmod pÞ ð3Þ
Now, knowing the public polynomials f6(x) and f 06ðxÞ in Eqs. (1) and (2), an attacker finds the roots of the equation:
/ðxÞ ¼ f6ðxÞ � f 06ðxÞ ¼ 0) ½x� hðx6;1ky6;1Þ�½x� hðx6;3ky6;3Þ�½1� ðx� hðx6;7ky6;7ÞÞ� ¼ 0 ðmod pÞ ð4Þ
Solving the Eq. (4) in polynomial time, the attacker obtains the roots as x = h(x6,1ky6,1),h(x6,3ky6,3) and 1 + h(x6,7ky6,7). Out of
these roots, h(x6,1ky6,1) and h(x6,3ky6,3) satisfy both Eqs. (1) and (2). Thus, knowing these values, the attacker easily computes
the secret key sk6 of security class SC6 as
SC4
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SC1

SC5

SC3

SC6

SC7

Fig. 2. A small sample of poset in a user hierarchy: when a new security class SC7 is added into the hierarchy.
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sk6 ¼ f6ðhðx6;1ky6;1ÞÞ ðmod pÞ
¼ f 06ðhðx6;1ky6;1ÞÞ ðmod pÞ
¼ f6ðhðx6;3ky6;3ÞÞ ðmod pÞ
¼ f 06ðhðx6;3ky6;3ÞÞ ðmod pÞ:
5. Improvement on Chung et al.’s scheme

Our proposed exterior root finding attack shows that Chung et al.’s scheme is insecure against this type of attack. In order
to remedy this weakness of Chung et al.’s scheme, we propose a simple improvement on Chung et al.’s scheme.
5.1. Description of the improved scheme

We only give the improved versions of the phases, namely inserting new security classes for key management in dynamic
access problems and key derivation for deriving the secret key of successor security classes of a predecessor security class. The
remaining phases, such as the relationship building phase, key generation phase, removing an existing security class, creating a
new relationship, revoking an existing relationship, and changing secret keys of a security class in the hierarchy, remain same as
in Chung et al.’s scheme.

� Inserting new security classes: If a new security class SCk is inserted into the hierarchy such that SCi P SCk P SCj, then
the relationships (SCi, SCk) 2 Ri,k for SCi P SCk and (SCk, SCj) 2 Rk,j for SCk P SCj need to be updated into the hierarchy. In this
phase, CA renews the secret keys skj of successors SCj of the newly added security class SCk. Moreover, CA must change the
public base points Gj by G0j and the public elliptic curve polynomials fj(x) with f 0j ðxÞ of SCj. CA needs the following steps to
manage the accessing priority of SCk in the hierarchy.
Step 1: Updates the partial relationships R that follow when the security class SCk joins the hierarchy.
Step 2: Randomly selects the secret key skk, the sub-secret key sk and the base point Gk for the class SCk.
Step 3: For all {SCij(SCi, SCk) 2 Ri,k} that satisfies SCi P SCk when the new class SCk is inserted in the hierarchy, com-

putes siGk = (xk,i, yk,i), and h(xk,ikyk,i).
Step 4: Computes the public polynomial fk(x) as follows:
fkðxÞ ¼
Y

SCi>SCk

ðx� hðxk;ikyk;iÞÞ þ skk ðmod pÞ
Step 5: For all {SCij(SCi, SCk) 2 Ri,k} and {SCjj(SCk, SCj) 2 Rk,j} that satisfy SCi P SCk P SCj when the new class SCk is inserted
in the hierarchy:
Replaces the secret key skj with sk0j and the base point Gj with G0j of the successor security class SCj of SCk.

Computes skG0j ¼ x0j;k; y
0
j;k

� �
.

Computes siG
0
j ¼ x0j;i; y

0
j;i

� �
.

Computes h x0j;kky0j;k
� �

and h x0j;iky0j;i
� �

using the one-way function h(�).

Step 6: Computes the public polynomial f 0j ðxÞ as follows:
f 0j ðxÞ ¼
Y

SCi>SCk>SCj

x� h x0j;iky0j;i
� �� �

x� h x0j;kky0j;k
� �� �

þ sk0j ðmod pÞ
Step 7: Replaces fj(x) with f 0j ðxÞ, and sends sk0j to SCj via a secure channel, and announces publicly G0j and f 0j ðxÞ.
Step 8: Sends skk and sk to SCk via a secure channel, and announces publicly Gk and fk(x).
� Key derivation: For the relationship (SCi,SCj) 2 Ri,j between two security classes SCi and SCj, if the predecessor SCi wants to

compute the updated secret key sk0j of its successor SCj, then SCi needs to proceed the following steps:

Step 1: For {SCij(SCi, SCj) 2 Ri,j}, computes siG
0
j ¼ x0j;i; y

0
j;i

� �
and h x0j;iky0j;i

� �
.

Step 2: Computes the secret key sk0j using the computed hash value h x0j;iky0j;i
� �

as follows:
SCi has the updated public elliptic curve polynomial for SCj as
f 0j ðxÞ ¼
Y

SCi>SCk>SCj

x� h x0j;iky0j;i
� �� �

x� h x0j;kky0j;k
� �� �

þ sk0j ðmod pÞ:
Computes
0

� �� �

skj ¼ f 0j h x0j;iky0j;i ðmod pÞ:
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5.2. Security analysis of the improved scheme

In this section, we discuss the security tolerances of our improved scheme with respect to the following attacks.

5.2.1. Exterior root finding attack
Suppose an attacker who is not a user in any security class in a user hierarchy attempts to derive the secret key of a secu-

rity class SCj by using the root finding algorithm. The attacker knows the public polynomial fj(x) for SCj. When CA adds a new
security class SCk in the existing user hierarchy with the relationship SCi P SCk P SCj, then in our improved scheme CA up-
dates the secret key skj with sk0j and the base point Gj with G0j for the security class SCj and also announces the public updated
elliptic curve polynomial f 0j ðxÞ. It is noted that the points and secret key skj used in construction of fj(x) are different from the
points and secret key sk0j constructed in f 0j ðxÞ. Now, knowing the public polynomial f 0j ðxÞ, the attacker can try to find the roots
of the equation /ðxÞ ¼ fjðxÞ � f 0j ðxÞ ¼ 0 in the polynomial time. However, the roots of /(x) = 0 will not help in finding the se-
cret key sk0j from either fj(x) or f 0j ðxÞ, and as a result, the attacker cannot derive the secret key sk0j for the security class SCj.
Hence, our improved scheme can resist against exterior root finding attacks.

Remark. An efficient way to improve the inserting new security classes phase of the proposed scheme can be as follows. In
Step 5 of the inserting new security classes phase (Section 5.1), for all {SCij(SCi, SCk) 2 Ri,k} and {SCjj(SCk, SCj) 2 Rk,j} that satisfy
SCi P SCk P SCj when the new class SCk is inserted in the hierarchy, CA may simply replace the secret key skj with sk0j without
renewing the base point Gj of the successor security class SCj of SCk. In this case, we have, skGj = (xj,k, yj,k) and siGj = (xj,i, yj,i). CA
may compute the updated new public polynomial f 0j ðxÞ for the security class SCj as follows:
f 0j ðxÞ ¼
Y

SCi>SCk>SCj

ðx� hðxj;ikyj;iÞÞðx� hðxj;kkyj;kÞÞ þ sk0j ðmod pÞ
It is easy to see that an attacker cannot find the updated secret key sk0j knowing the public polynomials fj(x) of SCj before
adding SCk and f 0j ðxÞ of SCj after adding SCk into the user hierarchy with SCi P SCk P SCj, using the root finding attack.

However, in the following we show in this case that the attacker can still obtain a relationship between the old secret key
skj and the new secret key sk0j with the help of public polynomials fj(x) and f 0j ðxÞ. For simplicity, we take fj(x) = (x � a1) + skj

(mod p), where a1 = h(xj,ikyj,i), and f 0j ðxÞ ¼ ðx� a1Þðx� a2Þ þ sk0j ðmod pÞ, where a2 = h(xj,kkyj,k). Rewriting fj(x) and f 0j ðxÞ, we
have,
fjðxÞ ¼ xþ u ðmod pÞ; ð5Þ
where
u ¼ skj � a1; ð6Þ
and

f 0j ðxÞ ¼ x2 þ vxþw ðmod pÞ; ð7Þ
where
v ¼ �ða1 þ a2Þ; ð8Þ
w ¼ a1a2 þ sk0j: ð9Þ
Since an attacker knows the public polynomials fj(x) and f 0j ðxÞ, so the coefficients u,v and w are known to the attacker. From
Eq. (8), we have, a2 = �v � a1 = �(v + skj � u). As a result, from Eq. (9), we obtain sk0j ¼ w� a1a2 ¼ sk2

j � ðu� vÞskj þ ðuv þwÞ,
that is, sk0j ¼ gðskjÞ, where gðskjÞ ¼ sk2

j � ðu� vÞskj þ ðuv þwÞ. In this case, it is observed that if the secret key skj is simply
replaced by the renewed secret key sk0j in the updated public polynomial f 0j ðxÞ, then an attacker may establish a relationship
between the old secret key skj and updated secret key sk0j. If the attacker does not have any ability to know the old secret key
skj, it is computationally infeasible for an attacker to obtain the new secret key sk0j. But, it is desirable to change the previous
factors of the old polynomial fj(x) along with the secret key skj embedded in it, into the updated public polynomial f 0j ðxÞ.
Hence, in order to achieve maximum security in our improved scheme described in Section 5.1, we have also changed
the base point Gj of SCj so that there will be no repeated factors of fj(x) in f 0j ðxÞ, and the attacker does not have any scope
to form a relationship between the old secret key and new secret key.

5.2.2. Contrary attack
Let SCj be a successor security class of the predecessor class SCi in the user hierarchy. In this attack, the question is

whether SCj can compute SCi’s secret key ski from the public elliptic curve polynomial fi(x) and the hash value h(xj,ikyj,i). How-
ever, it is computationally hard for the attacker to obtain ski due to the ECDLP and one-way hash function properties, and
thus the proposed scheme is secure against this attack.

5.2.3. Exterior collecting attack
This type of attack is from an outsider, where an intruder can generate the secret key from a lower security class by acces-

sible public parameters. As in Chung et al.’s scheme, the improved scheme also resists intrusion from outsiders.
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5.2.4. Collaborative attack
This attack analysis of the improved scheme is also similar to that of Chung et al.’s scheme. In this type of attack, several

users can collaborate to launch the attack. For example, if SCj and SCk be two immediate successors of SCi with (SCi, SCj) 2 Ri,j

and (SCi, SCk) 2 Ri,k, both SCj and SCk can collaborate to hack the secret key ski of SCi and then try to derive the sub-secret key si

of SCi from fj(x) and fk(x). However, this problem is computationally infeasible due to the ECDLP and one-way hash function
properties, and as a result, the improved scheme also resists this attack.

5.2.5. Equation attack
In this attack, a member in the user hierarchy may use the common successor to hack the secret key of another member

in the hierarchy such that it does not have an accessibility relationship with that member. The analysis of this attack is sim-
ilar to that in Chung et al.’s scheme. Hence, the improved scheme has also ability to resist this type of attack.

5.2.6. Forward security of the successors while changing SCi P SCk P SCj to SCi P SCj

When the relationship SCi P SCk P SCj is modified to SCi P SCj due to removable of the security class SCk in the hierarchy,
then CA not only deletes the accessibility relationship SCk P SCj, but also updates the accessibility-link relationship between
SCi and SCj. In this case, CA replaces the secret key skj of SCj with renewed secret key sk0j and also the base point Gj with G0j. As a
result, the computed renewed public elliptic curve polynomial f 0j ðxÞ does not include the previous factor h(xk,ikyk,i), and the
authority of SCk over SCj is terminated so that SCk cannot have any ability to determine later the secret key sk0j of SCj. The
forward security of the existing security class SCj is then retained.

5.3. Formal security proof of the proposed scheme

In this section, we provide the formal security proof of our improved scheme.

Definition 1 (Formal definition of ECDLP). We define the elliptic curve discrete logarithm problem (ECDLP) formally as in
[19]. Given Ep(a, b) be an elliptic curve modulo a prime p. Let P 2 Ep(a, b) and Q = kP 2 Ep(a, b) be two points, where k 2 RZp.
(We use the notation a 2 RS to denote that a is chosen randomly from the set S.)

Instance: (P, Q, r) for some k, r 2 RZp.
Output: yes, if Q = rP, i.e., k = r, and output no, otherwise.

We now consider the following two distributions
Dreal ¼ fk2RZp;A ¼ P; B ¼ Qð¼ kPÞ;C ¼ k : ðA;B;CÞg;
Drand ¼ fk; r2RZp;A ¼ P;B ¼ Qð¼ kPÞ;C ¼ r : ðA;B;CÞg:
Then the advantage of any probabilistic, polynomial-time, 0/1-valued (false/true-valued) distinguisherD in solving ECDLP on
Ep(a, b) is defined as
AdvECDLP
D;Epða;bÞ ¼ jPr½ðA;B;CÞ  Dreal : DðA; B;CÞ ¼ 1� � Pr½ðA;B;CÞ  Drand : DðA;B;CÞ ¼ 1�j;
where the probability Pr[�] is taken over the random choices of k and r. We call D to be a (t, �)-ECDLP distinguisher for Ep(a, b)
if D runs at most in time t such that AdvECDLP

D;Epða;bÞðtÞP �.
ECDLP assumption: There exists no (t, �)-ECDLP distinguisher for Ep(a,b). In other words, for every probabilistic, polyno-

mial-time 0/1-valued distinguisher D, we have AdvECDLP
D;Epða;bÞðtÞ 6 �, for any sufficiently small � > 0.

Theorem 1. Under the elliptic curve discrete logarithm problem assumption, our improved scheme is provably secure against an
adversary for computing the secret key of a security class in the user hierarchy.
Proof. Let fjðxÞ ¼
Q

SCi>SCj
ðx� hðxj;ikyj;iÞÞ þ skj ðmod pÞ be the public elliptic curve polynomial of SCj. Note that fj(x) can be also

the polynomial after inserting new security classes into the hierarchy. Let aj,i = h(xj,ikyj,i). In this proof, we need to construct
an adversary A who can find or guess the value aj,i correctly from public elliptic curve parameters and fj(x) such that the
secret key skj can be computed as skj = fj(aj,i) (mod p) = fj(h(xj,ikyj,i)) (mod p).

We define the following two random oracles for the adversary A:

– Reveal: This unconditionally outputs one of values h(xj,ikyj,i), say a0j;i from the public elliptic curve polynomial fj(x) and also
a secret key sk for the security class SCj.

– Test: This query is allowed at any time during the attacker’s execution. This oracle computes the attacker’s ability to dis-
tinguish between the correct secret key and a fake secret key for SCj by the following test:
Accept sk as the correct secret key skj of SCj, if fjða0j;iÞ ¼ sk ðmod pÞ;

Reject sk as the correct secret key skj of SCj, otherwise.
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The adversary A runs the following experimental algorithm, ExperimentECDLP
XP;A for our improved scheme, say XP.

Algorithm 3. ExperimentECDLP
XP;A

Call Reveal oracle. Let a0j;i; sk
� �

 RevealðfjðxÞÞ.

Call Test oracle: Test a0j;i; sk
� �

.

if (Test oracle detects sk as the correct key) then
return 1

else
return 0

end if

As in [20], we define SuccECDLP
XP;A ¼ 2Pr ExperimentECDLP

XP;A ¼ 1
h i

� 1. Then an advantage function for the proposed scheme XP
becomes
AdvECDLP
XP ðt; qR; qTÞ ¼max

A
SuccECDLP

XP;A

n o
;

where the maximum is taken over all A with execution time t, qR is the number of queries to the Reveal oracle and qT the
number of queries to the Test oracle.

We say a probability function f:N ? R[0,1] is negligible in M if, for all c > 0, there exists M0 2 N suh that f ðMÞ 6 1
Mc whenever

M P M0, where N is the set of natural numbers, R the set of real numbers, and R[0,1] = {x 2 Rj0 6 x 6 1} [20]. Our improved
scheme XP is said to be secure against an adversary for computing a secret key of a security class in the user hierarchy, if
there is no polynomial time adversary with non-negligible advantage. In other words, we say that our proposed scheme
XP is secure if AdvECDLP

XP ðt; qR; qTÞ 6 �, for any sufficiently small � > 0.
Consider the above experiment for an adversary A. The adversary needs to compute or guess correctly the value h(xj,ikyj,i),

where siGj = (xj,i,yj,i) so that the secret key skj of SCj can be computed correctly by that adversary. In order to get correct secret
key skj of SCj, the attacker needs to know si correctly from siGj = (xj,i, yj,i). Recall that si is the sub-secret key of the predecessor
class SCi of SCj and it is only known to SCi. The attacker cannot to know si, because it is computationally infeasible problem to
determine si due to ECDLP assumption. Thus, the problem of finding the secret key skj of a security class SCj in the user hier-
archy by the adversary A essentially reduces to the problem of finding the discrete logarithm si from siGj knowing the public
polynomial fj(x), the base point Gj and public elliptic curve parameters. Hence, AdvECDLP

XP ðt; qR; qTÞ depends on AdvECDLP
D;Epða;bÞðtÞ.

Since AdvECDLP
D;Epða;bÞðtÞ is negligible, we finally have AdvECDLP

XP ðt; qR; qTÞ is also negligible. As a result, no adversary can compute
the secret key skj of SCj and our improved scheme becomes provably secure against an adversary for computing the secret
key of a security class in the user hierarchy. h
6. Performance comparison of our improved scheme with Chung et al.’s scheme and Chen-Huang’s scheme

In this section, we compare the performance analysis in terms of complexity and security for access control problems
among Chung et al.’s scheme, Chen-Huang’s scheme and our improved scheme.

In Table 1, we have compared the performance in terms of complexity for access control problems between our improved
scheme, Chen-Huang’s scheme and Chung et al.’s scheme. For analysis, the following notations are used:

� n: number of security classes in a user hierarchy.
� jpj: bit length of an integer p.
� ki: degree of the public elliptic curve polynomial fi(x) for Chung et al.’s scheme and our improved scheme, that is

the number of successors of a security class SCi. In case of Chen-Huang’s scheme, ki is the number of successors of a
security class SCi.

� TM: time for performing a modular multiplication.
� TECM : time for performing a scalar multiplication.
� TXOR: time for performing an XOR (Exclusive-OR) operation.
� TH: time for performing a one-way hash function h(�).
� TENC: time for performing a symmetric-key encryption.
� TDEC: time for performing a symmetric-key decryption.

In Chung et al.’s scheme and our improved scheme, the complexity requirement is as follows. Each security class needs to
store the public parameters of all other security classes including its own public parameters. Note that CA publishes the pub-
lic parameters: base point Gi and polynomial fi(x) for each security class SCi. Since there are n security classes, each security
class requires storage complexity njpj for Gi’s. Each public elliptic curve polynomial fi(x), which is of degree ki, requires



Table 1
Performance analysis in terms of complexity for access control problems among Chen-Huang’s scheme, Chung et al.’s scheme and our improved scheme.

Required
complexity

Chen-Huang’s scheme Chung et al.’s scheme Our improved scheme

I1 njPij þ
Pn

i¼1kijRijj 2nþ
Pn

i¼1ki þ 3
� �

jpj 2nþ
Pn

i¼1ki þ 3
� �

jpj
I2 jskij 2jpj 2jpj
I3

Pn
i¼1kiðTXOR þ TH þ TENCÞ

Pn
i¼1kið2TECM þ THÞ

Pn
i¼1kið2TECM þ THÞ

I4 TXOR + TH + TDEC TECM þ kiTM þ TH TECM þ kiTM þ TH

I5 Updating the related public
relation-parameters Rij’s

Updating the related public
parameters of fj(x)’s

Renewing the secret keys skj’s, the base points Gj’s, and
updating the public parameters of fj(x)’s

I1: Storage for public parameters.
I2: Storage of private keys in each security class SCi.
I3: Construction of public polynomials fi(x)’s in Chung et al.’s scheme and our improved scheme, or construction of public relation-parameters Rij’s in Chen-
Huang’s scheme for key derivation.
I4: Key derivation for a security class.
I5: Adding a new security class.

Table 2
Performance analysis in terms of security for access control problems among Chen-Huang’s scheme, Chung et al.’s scheme and our improved scheme.

Chen-Huang’s scheme Chung et al.’s scheme Our improved scheme

Resists contrary attack Yes Yes Yes
Resists exterior root collecting attack Yes Yes Yes
Resists collaborative attack Yes Yes Yes
Resists equation attack N/A Yes Yes
Resists forward security of the successors

while changing SCi P SCk P SCj to SCi P SCj

Yes Yes Yes

Resists exterior root finding attack N/A No Yes
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storage space (ki + 1)jpj, and each security class requires storage complexity due to storing n public polynomials is thenPn
i¼1ðki þ 1Þjpj. Apart from these public parameters, the common public parameters are p, a and b of the elliptic curve Ep(a, b)

and so due to these, each node requires additional storage complexity 3jpj. Summing up all these, the total storage complex-
ity for each security class becomes njpj þ

Pn
i¼1ðki þ 1Þjpj þ 3jpj ¼ 2nþ

Pn
i¼1ki þ 3

� �
jpj. On the other hand, the storage com-

plexity due to storing two private keys (secret key and sub-secret key) for each security class is 2jpj. Now, CA needs the
complexity of

Pn
i¼1kiðTECM þ THÞ to compute siGj = (xj,ikyj,i)’s and h(xj,ikyj,i)’s, and

Pn
i¼1kiTECM to construct n polynomials for

all security classes. Each security class in the user hierarchy also requires the complexity TECM þ kiTM þ TH in order to derive
a successor’s secret key.

In Chen-Huang’s scheme, each security class needs to store all the public parameters of all other security classes including
its own public parameters. In this scheme, CA publishes the large positive integer Pi for each security class SCi, which requires
jPij bits. CA then publishes the public relation-parameter Rij for deriving the secret key skj of the security class SCj in which
Rij ¼ EhðPj�skiÞðskjÞ, where Pj is the public large positive integer for SCj and ski the secret key of SCi. If there are ki number of
public relation-parameters for a security class SCi, each security class requires storage complexity of njPij þ

Pk
i¼1kijRijj bits,

where jPij and jRijj are the number of bits present in Pi and Rij respectively. For example, if we use the Advanced Encryption
Standard (AES) [21] as symmetric-key cryptosystem, then AES takes an input of 128 bits in encryption algorithm and pro-
duces a ciphertext of 128 bits and thus, jRijj = 128 bits when the key skj is 128 bits only. The storage space required for each
security class SCi to store the large secret key ski is jskij bits. CA needs the complexity of

Pn
i¼1kiðTXOR þ TH þ TENCÞ for gener-

ating the public relation-parameters of all security classes in the hierarchy. Finally, each security class SCi requires the com-
plexity of TXOR + TH + TDEC to derive the secret key of a successor class SCj.

It is observed that the complexity for our improved scheme is higher than that for Chung et al.’s scheme when a new secu-
rity class is inserted into the existing hierarchy. This is because CA needs to renew the secret keys skj’s and also the base
points Gj’s for successor classes SCj’s for adding a new security class. On the other hand, Chen-Huang’s scheme uses the hash
function and symmetric-key encryption/decryptions. Since symmetric-key cryptosystem is efficient than elliptic curve pub-
lic-key cryptosystem, obviously Chen-Huang’s scheme requires less computational complexity compared with Chung et al.’s
scheme and our improved scheme. However, for ECC cryptosystem to provide sufficient security the prime number p to be
chosen 160 bits only. As a result, in Chung et al.’s scheme and our improved scheme the secret key ski and sub-secret key si of
a security class SCi are of 160 bits only, whereas in Chen-Huang’s scheme Pi and ski for the security class SCi may be larger
than 160 bits.

Table 2 shows the performance analysis in terms of security for access control problems among Chung et al.’s scheme,
Chen-Huang’s scheme and our improved scheme. As stated earlier that our main theme of this paper is to identify a security
flaw in Chung et al.’s scheme and then provide a fix to remedy the flaw in their scheme, our improved scheme provides bet-
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ter security as compared to Chung et al.’s scheme, because Chung et al.’s is vulnerable to exterior root finding attack in which
an attacker is able to compute the secret key of a security class when a new security class is inserted into the existing
hierarchy. Even if our improved scheme requires more complexity due to inserting new security classes into the existing
hierarchy as compared with that for Chung et al.’s scheme, by considering the security aspects our improved scheme is better
than Chung et al.’s scheme.

7. Conclusion

In this paper, we have pointed out a security flaw in Chung et al.’s scheme. Our proposed exterior root finding attack
shows that the secret key skj of a security class SCj is revealed to an attacker, who is not any user in the user hierarchy,
by knowing the public polynomial fj(x) of SCj and the updated public polynomial f 0j ðxÞ of SCj when CA adds a new security
class SCk such that SCi P SCk P SCj. To eliminate this security flaw, we have further proposed a simple improvement on
Chung et al.’s scheme. We have shown that a predecessor class SCi can easily compute the secret key sk0j using the updated
public polynomial f 0j ðxÞ of the successor class SCj and its own sub-secret key si. We have analyzed and compared the perfor-
mance in terms of complexity and security for access control problems of our improved scheme with those for Chung et al.’s
scheme. It is observed that though our improved scheme requires more complexity for adding a new security class to achieve
maximum security as compared with Chung et al.’s scheme, our scheme outperforms in terms of security because Chung
et al.’s scheme is vulnerable to exterior root finding attack.
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